Title of article :
Effect of micropores diffusion on kinetics of CH4 decomposition over a wood-derived carbon catalyst Original Research Article
Author/Authors :
A. Dufour، نويسنده , , A. Celzard، نويسنده , , B. Ouartassi، نويسنده , , F. Broust، نويسنده , , V. Fierro، نويسنده , , A. Zoulalian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
6
From page :
120
To page :
125
Abstract :
In order to optimise hydrogen production from biomass gasification, catalytic conversion of methane contained in a surrogate biomass syngas (CH4 14%; CO 19%; CO2 14%; H2 16%; H2O 30%; N2 7%) is investigated over a fixed bed of porous wood char as a function of temperature (800–1000 °C) and space time (1.6–6.2 min g L−1). Determination of Thiele modulus evidences a change of kinetic regime from chemically- to diffusion-controlled when the temperature increases; this finding is particularly relevant when porous chars having an average pore width of 1 nm are used as catalysts. Mass diffusion transfers are accounted for by a model introducing an internal effectiveness factor. Knudsen diffusion in micropores is shown to limit the conversion rate of methane per unit mass of catalyst, and explains why such a rate is not proportional to the BET surface area, especially when the latter is higher than typically 300 m2/g. It is concluded that diffusion limitations in micropores should be taken into account, otherwise underestimated activation energy and intrinsic kinetic constant are obtained in some experimental conditions.
Keywords :
biomass , Catalysis , Hydrogen production , Carbon , Effective diffusivity , Methane decomposition
Journal title :
Applied Catalysis A:General
Serial Year :
2009
Journal title :
Applied Catalysis A:General
Record number :
1156096
Link To Document :
بازگشت