Title of article :
Role of alkali metal in a highly active Pd/alkali/Fe2O3 catalyst for water gas shift reaction Original Research Article
Author/Authors :
Ryo Watanabe، نويسنده , , Yuji Sakamoto، نويسنده , , Keisuke Yamamuro، نويسنده , , Sakurako Tamura، نويسنده , , Eiichi Kikuchi، نويسنده , , Yasushi Sekine، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
11
From page :
1
To page :
11
Abstract :
Pd/K/Fe2O3 catalyst shows high activity for water gas shift (WGS) reaction. The K/Pd molar ratio on the catalyst has a remarkable effect on WGS activity. The optimum K/Pd molar ratio is about 2. In this study, to clarify the role of alkali metal (potassium), WGS activities of Pd/alkali/Fe2O3 (alkali: Li, Na, K or Cs) catalysts were investigated and the reaction mechanism over the Pd/K/Fe2O3 catalyst was examined with transient response analyses using a concentration jump method with a quadrupole mass spectrometer (Q-Mass). Results showed that the addition of alkali metals such as Na, K and Cs drastically enhanced WGS activity, except for Li-loaded catalyst. WGS reaction over the highly active Pd/K/Fe2O3 catalyst was found to proceed via reduction–oxidation (redox) using lattice oxygen. Thereby, CO was oxidized by lattice oxygen in Fe2O3. The consumed lattice oxygen was regenerated by H2O. The results of CO-TPR revealed that oxidation of CO by lattice oxygen were enhanced by K, Cs or Na addition. H2-TPR results showed that reduction of Fe2O3 was suppressed by an increment of loading amount of potassium, which brought a high stability for the WGS reaction. The result of CO/H2O-TPR showed that steam can promote the regeneration of consumed lattice oxygen. The synergistic effect brought a high release ability of lattice oxygen for CO oxidation and also high regenerating ability of consumed lattice oxygen by H2O to produce hydrogen, to the Pd/K/Fe2O3 catalyst. It enabled high catalytic performance of the Pd/K/Fe2O3 catalyst with K/Pd molar ratio of 2.
Keywords :
Water gas shift , Redox , Lattice oxygen , Hydrogen production , Alkali metal addition
Journal title :
Applied Catalysis A:General
Serial Year :
2013
Journal title :
Applied Catalysis A:General
Record number :
1157388
Link To Document :
بازگشت