Title of article :
Visualizing metal-ion-binding sites in group I introns by iron(II)-mediated Fenton reactions Original Research Article
Author/Authors :
Christian Berens، نويسنده , , Barbara Streicher، نويسنده , , Renée Schroeder، نويسنده , , Wolfgang Hillen، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 1998
Pages :
13
From page :
163
To page :
175
Abstract :
Abstract Background: Most catalytic RNAs depend on divalent metal ions for folding and catalysis. A thorough structure-function analysis of catalytic RNA therefore requires the identification of the metal-ion-binding sites. Here, we probed the binding sites using Fenton chemistry, which makes use of the ability of Fe2+ to functionally or structurally replace Mg2+ at ion-binding sites and to generate short-lived and highly reactive hydroxyl radicals that can cleave nucleic acid and protein backbones in spatial proximity of these ion-binding sites. Results: Incubation of group I intron RNA with Fe2+, sodium ascorbate and hydrogen peroxide yields distinctly cleaved regions that occur only in the correctly folded RNA in the presence of Mg2+ and can be competed by additional Mg2+, suggesting that Fe2+ and Mg2+ interact with the same sites. Cleaved regions in the catalytic core are conserved for three different group I introns, and there is good correlation between metal-ion-binding sites determined using our method and those determined using other techniques. In a model of the T4 phage-derived td intron, cleaved regions separated in the secondary structure come together in three-dimensional space to form several metal-ion-binding pockets. Conclusions: In contrast to structural probing with Fe2+/EDTA, cleavage with Fe2+ detects metal-ion-binding sites located primarily in the inside of the RNA. Essentially all metal-ion-binding pockets detected are formed by tertiary structure elements. Using this method, we confirmed proposed metal-ion binding sites and identified new ones in group I intron RNAs. This approach should allow the localization of metal-ion-binding sites in RNAs of interest.
Journal title :
Chemistry and Biology
Serial Year :
1998
Journal title :
Chemistry and Biology
Record number :
1158006
Link To Document :
بازگشت