Title of article :
Synthesis of 4-Diphosphocytidyl-2-C-Methyl-D-Erythritol 2-Phosphate and Kinetic Studies of Mycobacterium tuberculosis IspF
Author/Authors :
Prabagaran Narayanasamy، نويسنده , , Hyungjin Eoh، نويسنده , , Patrick J. Brennan، نويسنده , , Dean C. Crick، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Pages :
6
From page :
117
To page :
122
Abstract :
Many pathogenic bacteria utilize the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, two major building blocks of isoprenoid compounds. The fifth enzyme in the MEP pathway, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) synthase (IspF), catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to ME-CPP with a corresponding release of cytidine 5-monophosphate (CMP). Because there is no ortholog of IspF in human cells, IspF is of interest as a potential drug target. However, study of IspF has been hindered by a lack of enantiopure CDP-ME2P. Herein, we report the first, to our knowledge, synthesis of enantiomerically pure CDP-ME2P from commercially available D-arabinose. Cloned, expressed, and purified M. tuberculosis IspF was able to utilize the synthetic CDP-ME2P as a substrate, a result confirmed by mass spectrometry. A convenient, sensitive, in vitro IspF assay was developed by coupling the CMP released during production of ME-CPP to mononucleotide kinase, which can be used for high throughput screening.
Journal title :
Chemistry and Biology
Serial Year :
2010
Journal title :
Chemistry and Biology
Record number :
1159819
Link To Document :
بازگشت