Author/Authors :
Fan Wang، نويسنده , , Ann Chou، نويسنده , , Laura Segatori، نويسنده ,
Abstract :
The hallmark of Gaucherʹs disease cellular pathogenesis is the lysosomal accumulation of glucosylceramide, which is caused by misfolding of mutated glucocerebrosidase (GC) and loss of lysosomal GC activity, and leads to depletion of [Ca2+]ER. We demonstrate that modulation of Ca2+ homeostasis and enhancement of the cellular folding capacity synergize to rescue the folding of mutated GC variants. Lacidipine, an L-type Ca2+ channel blocker that also inhibits [Ca2+]ER efflux, enhances folding, trafficking, and activity of degradation-prone GC variants. Lacidipine remodels mutated GC proteostasis by simultaneously activating a series of distinct molecular mechanisms, namely modulation of Ca2+ homeostasis, upregulation of the ER chaperone BiP, and moderate induction of the unfolded protein response. However, unlike previously reported proteostasis regulators, lacidipine treatment is not cytotoxic but prevents apoptosis induction typically associated with sustained activation of the unfolded protein response.