Author/Authors :
Marianna Zaretsky، نويسنده , , Revital Etzyoni، نويسنده , , Joel Kaye، نويسنده , , Liora Sklair-Tavron، نويسنده , , Amir Aharoni، نويسنده ,
Abstract :
Interleukin-17 (IL-17) is a T-cell-derived cytokine that promotes inflammatory pathology in autoimmune diseases. Blocking IL-17A interactions with its endogenous IL-17 receptor (IL-17RA) can constitute an important target for therapeutic intervention. Here, we utilized a directed evolution approach to generate soluble IL-17RA mutants that exhibit increased IL-17A binding affinity and thermostability, relative to the wild-type. Human fibroblast cell-based assay and in vivo analysis in mice indicated that two improved IL-17RA mutants efficiently inhibit the secretion of IL-17A-induced proinflammatory cytokines. Analysis of one of these mutants in a psoriasis mouse model showed its efficacy in promoting the recovery of psoriasis plaques. This mutant can be used as a promising drug candidate for the treatment of psoriasis and may be a therapeutic agent for various other autoimmune diseases.