Author/Authors :
Claire Marie Filone، نويسنده , , Erin N. Hodges، نويسنده , , Brian Honeyman، نويسنده , , G. Guy Bushkin، نويسنده , , Karla Boyd، نويسنده , , Andrew Platt، نويسنده , , Feng Ni، نويسنده , , Kyle Strom، نويسنده , , Lisa Hensley، نويسنده , , John K. Snyder، نويسنده , , John H. Connor، نويسنده ,
Abstract :
There are no approved therapeutics for the most deadly nonsegmented negative-strand (NNS) RNA viruses, including Ebola (EBOV). To identify chemical scaffolds for the development of broad-spectrum antivirals, we undertook a prototype-based lead identification screen. Using the prototype NNS virus, vesicular stomatitis virus (VSV), multiple inhibitory compounds were identified. Three compounds were investigated for broad-spectrum activity and inhibited EBOV infection. The most potent, CMLDBU3402, was selected for further study. CMLDBU3402 did not show significant activity against segmented negative-strand RNA viruses, suggesting proscribed broad-spectrum activity. Mechanistic analysis indicated that CMLDBU3402 blocked VSV viral RNA synthesis and inhibited EBOV RNA transcription, demonstrating a consistent mechanism of action against genetically distinct viruses. The identification of this chemical backbone as a broad-spectrum inhibitor of viral RNA synthesis offers significant potential for the development of new therapies for highly pathogenic viruses.