• Title of article

    Extremely high and specific activity of DNA enzymes in cells with a Philadelphia chromosome Original Research Article

  • Author/Authors

    Masaki Warashina، نويسنده ,

  • Issue Information
    ماهنامه با شماره پیاپی سال 1999
  • Pages
    14
  • From page
    237
  • To page
    250
  • Abstract
    Background Chronic myelogenous leukemia (CML) results from chromosome 22 translocations (the Philadelphia chromosome) that creates BCR-ABL fusion genes, which encode two abnormal mRNAs (b3a2 and b2a2). Various attempts to design antisense oligonucleotides that specifically cleave abnormal L6 BCR-ABL fusion mRNA have not been successful. Because b2a2 mRNA cannot be effectively cleaved by hammerhead ribozymes near the BCR-ABL junction, it has proved very difficult to engineer specific cleavage of this chimeric mRNA. Nonspecific effects associated with using antisense molecules make the use of such antisense molecules questionable. Results The usefulness of DNA enzymes in specifically suppressing expression of L6 BCR-ABL mRNA in mammalian cells is demonstrated. Although the efficacy of DNA enzymes with natural linkages decreased 12 hours after transfection, partially modified DNA enzymes, with either phosphorothioate or 2′-O-methyl groups at both their 5′ and 3′ ends, remained active for much longer times in mammalian cells. Moreover, the DNA enzyme with only 2′-O-methyl modifications was also highly specific for abnormal mRNA. Conclusions DNA enzymes with 2ʹ-O-methyl modifications are potentially useful as gene-inactivating agents in the treatment of diseases such as CML. In contrast to conventional antisense DNAs, some of the DNA enzymes used in this study were highly specific and cleaved only abnormal BCR-ABL mRNA.
  • Journal title
    Chemistry and Biology
  • Serial Year
    1999
  • Journal title
    Chemistry and Biology
  • Record number

    1163007