Title of article :
Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model
Author/Authors :
Yi Guo، نويسنده , , Robert G. Parker، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
14
From page :
32
To page :
45
Abstract :
Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.
Keywords :
Rolling element , Bearing , Stiffness , Contact , Finite element
Journal title :
Mechanism and Machine Theory
Serial Year :
2012
Journal title :
Mechanism and Machine Theory
Record number :
1164538
Link To Document :
بازگشت