Author/Authors :
Inoue، Akihisa نويسنده , , Shen، Baolong نويسنده , , Takeuchi، Akira نويسنده ,
Abstract :
We review our recent results of the formation, fundamental properties, workability and applications of late transition metal base bulk glassy alloys which have been developed after the first synthesis of Fe-based bulk glassy alloys by the copper mold casting method in 1995. The late metal transition base bulk glassy alloys were obtained in Fe–(Al,Ga)–(P,C,B,Si), Fe–(Cr,Mo)–(C,B), Fe–(Zr,Hf,Nb,Ta)–B, Fe–Ln–B(Ln=lanthanide metal), Fe–B–Si–Nb and Fe–Nd–Al for Fe-based alloys, Co–(Ta,Mo)–B and Co–B–Si–Nb for Co-based alloys, Ni–Nb–(Ti,Zr)–(Co,Ni) for Ni-based alloys, and Cu–Ti–(Zr,Hf), Cu–Al–(Zr,Hf), Cu–Ti–(Zr,Hf)–(Ni,Co) and Cu–Al–(Zr,Hf)–(Ag,Pd) for Cu-based alloys. These bulk glassy alloys exhibit useful engineering properties of high mechanical strength, large elastic elongation and high corrosion resistance. In addition, Fe- and Co-based bulk glassy alloys have good soft magnetic properties which cannot be obtained for conventional amorphous and crystalline type magnetic alloys. The Fe- and Ni-based bulk glassy alloys have already been used in some application fields. These late transition metal base bulk glassy alloys are promising as new metallic engineering materials.
Keywords :
bulk glassy alloys , late transition metal base , soft-magnetic properties , applications , Synthesis , mechanical properties