Title of article :
Neural networks for prediction of acoustical properties of polyurethane foams
Author/Authors :
Glenn C Gardner، نويسنده , , Meghan E OʹLeary، نويسنده , , Scott Hansen، نويسنده , , J.Q Sun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
14
From page :
229
To page :
242
Abstract :
This paper presents a study of neural networks for prediction of acoustical properties of polyurethane foams. The proposed neural network model of the foam uses easily measured parameters such as frequency, airflow resistivity and density to predict multiple acoustical properties including the sound absorption coefficient and the surface impedance. Such a model is quite robust in the sense that it can be used to develop models for many different classes of materials with different sets of input and output parameters. The current neural network model of the foam is empirical and provides a useful complement to the existing analytical and numerical approaches.
Keywords :
Sound absorption , Modeling of acoustic foams , Neural networks , noise control
Journal title :
Applied Acoustics
Serial Year :
2003
Journal title :
Applied Acoustics
Record number :
1170572
Link To Document :
بازگشت