Title of article :
Ray-tracing prediction of optimal conditions for speech in realistic classrooms
Author/Authors :
Murray Hodgson، نويسنده , , Galen Wong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
Recent papers have discussed the optimal reverberation times in classrooms for speech intelligibility, based on the assumption of a diffuse sound field. Here this question was investigated for more ‘typical’ classrooms with non-diffuse sound fields. A ray-tracing model was modified to predict speech-intelligibility metric U50. It was used to predict U50 in various classroom configurations for various values of the room absorption, allowing the optimal absorption (that predicting the highest U50)—and the corresponding optimal reverberation time—to be identified in each case. The range of absorptions and reverberation times corresponding to high speech intelligibility were also predicted in each case. Optimal reverberation times were also predicted from the optimal surface-absorption coefficients using Sabine and Eyring versions of diffuse-field theory, and using the diffuse-field expression of Hodgson and Nosal. In order to validate the ray-tracing model, predictions were made for three classrooms with highly diffuse sound fields; these were compared to values obtained by the diffuse-field models, with good agreement. The methods were then applied to three ‘typical’ classrooms with non-diffuse fields. Optimal reverberation times increased with room volume and noise level to over 1 s. The accuracy of the Hodgson and Nosal expression varied with classroom size and noise level. The optimal average surface-absorption coefficients varied from 0.19 to 0.83 in the different classroom configurations tested. High speech intelligibility was, in general, predicted for a wide range of coefficients, but could not be obtained in a large, noisy classroom.
Keywords :
Acoustical conditions , Classrooms , Speech intelligibility , U50 , Optimal reverberation
Journal title :
Applied Acoustics
Journal title :
Applied Acoustics