Title of article :
A coupled edge-/face-based smoothed finite element method for structural–acoustic problems
Author/Authors :
Z.C. He، نويسنده , , G.R. Liu، نويسنده , , Z.H. Zhong، نويسنده , , X.Y. Cui، نويسنده , , G.Y. Zhang، نويسنده , , A.G. Cheng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
The edge-based smoothed finite element method (ES-FEM) and the face-based smoothed finite element method (FS-FEM) developed recently have shown great efficiency in solving solid mechanics problems with triangular and tetrahedral meshes. In this paper, a coupled ES-/FS-FEM model is extended to solve the structural–acoustic problems consisting of a plate structure interacting with the fluid medium. Three-node triangular elements and four-node tetrahedral elements are used to discretize the two-dimensional (2D) plate and three-dimensional (3D) fluid, respectively, as they can be generated easily and even automatically for complicated geometries. The field variable in each element is approximated using the linear shape functions, which is exactly the same as that in the standard FEM. The gradient field of the problem is obtained particularly using the gradient smoothing operation over the edge-based and face-based smoothing domains in 2D and 3D, respectively. The gradient smoothing technique can provide a proper softening effect to the model, effectively solve the problems caused by the well-known “overly-stiff” phenomenon existing in the standard FEM, and hence significantly improve the accuracy of the solution for the coupled systems. Intensive numerical studies have been conducted to verify the effectiveness of the coupled ES-/FS-FEM for structural–acoustic problems.
Keywords :
Meshfree method , Structural–acoustic , Finite element method (FEM) , Edge-based smoothed finite element method (ES-FEM) , Face-based smoothed finite element method (FS-FEM) , Numerical method
Journal title :
Applied Acoustics
Journal title :
Applied Acoustics