Title of article :
On the Betti Numbers of Shifted Complexes of Stable Simplicial Complexes
Author/Authors :
Tang، Zhongming نويسنده , , Zhuang، Guifen نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
-46
From page :
47
To page :
0
Abstract :
Let R be a domain. A non-zero R-module M is called a Dedekind module if every submodule N of M such that N M either is prime or has a prime factorization N=P1P2... PnN*, where P1, P2,... Pn are prime ideals of R and N* is a prime submodule in M. When R is a ring, a non-zero R-module M is called a ZPI module if every submodule N of M such that M either is prime or has a prime factorization. The purpose of this paper is to introduce interesting and useful properties of Dedekind and ZPI modules.
Keywords :
shifted complexes , Stanley-Reisner ideals , Betti numbers
Journal title :
Algebra Colloquium
Serial Year :
2006
Journal title :
Algebra Colloquium
Record number :
118035
Link To Document :
بازگشت