Title of article :
An asymptotically tight bound on countermodels for Łukasiewicz logic Original Research Article
Author/Authors :
Stefano Aguzzoli، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
14
From page :
76
To page :
89
Abstract :
Let ϕ be a formula of Łukasiewicz infinite-valued propositional logic having a total of l many occurrences of n distinct propositional variables (call l the length of ϕ). Results in Aguzzoli and Ciabattoni [Finiteness in infinite-valued Łukasiewicz logic, Journal of Logic, Language and Information, 9 (2000) 5–29] show that if ϕ is not a tautology then there is an MV chain image of cardinality ⩽ ⌊(l/n)n⌋ + 1 together with an evaluation image of propositional variables in image, such that image is a countermodel for ϕ, that is image. We show that for each integer n > 0 the function b(n, l) = (l/n)n + 1 yields an asymptotically tight upper bound on the maximum cardinality of the smallest MV algebras having countermodels for formulas of length l.
Keywords :
Many-valued logics
Journal title :
International Journal of Approximate Reasoning
Serial Year :
2006
Journal title :
International Journal of Approximate Reasoning
Record number :
1182341
Link To Document :
بازگشت