Title of article :
Towards scalable and data efficient learning of Markov boundaries Original Research Article
Author/Authors :
Jose M. Pe?a، نويسنده , , Roland Nilsson، نويسنده , , Johan Bj?rkegren، نويسنده , , Jesper Tegnér، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
22
From page :
211
To page :
232
Abstract :
We propose algorithms for learning Markov boundaries from data without having to learn a Bayesian network first. We study their correctness, scalability and data efficiency. The last two properties are important because we aim to apply the algorithms to identify the minimal set of features that is needed for probabilistic classification in databases with thousands of features but few instances, e.g. gene expression databases. We evaluate the algorithms on synthetic and real databases, including one with 139,351 features.
Keywords :
Bayesian networks , Feature subset selection , classification
Journal title :
International Journal of Approximate Reasoning
Serial Year :
2007
Journal title :
International Journal of Approximate Reasoning
Record number :
1182386
Link To Document :
بازگشت