Title of article :
Fuzzy variant of a statistical test point Kalman filter Original Research Article
Author/Authors :
Gregory R. Hudas، نويسنده , , Ka C. Cheok، نويسنده , , James L. Overholt، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
15
From page :
455
To page :
469
Abstract :
In this paper, we propose the conceptual use of fuzzy clustering techniques as iterative spatial methods to estimate a posteriori statistics in place of the weighted averaging scheme of the Unscented Kalman filter. Specifically, instead of a linearization methodology involving the statistical linear regression of the process and measurement functions through some deterministically chosen set of test points (sigma points) contained within the “uncertainty region” around the state estimate, we present a variant of the Unscented transformation involving fuzzy clustering techniques which will be applied to the test points yielding “degrees of membership” in which Gaussian shapes can be “fit” using a least squares scheme. Implementation into the Kalman methodology will be shown along with simple state and parameter estimation examples.
Keywords :
Fuzzy clustering , Fuzzy c-means , Parameter estimation , State estimation , Gustafson/Kessel , weighted least squares , Unscented transformation , Covariance
Journal title :
International Journal of Approximate Reasoning
Serial Year :
2007
Journal title :
International Journal of Approximate Reasoning
Record number :
1182400
Link To Document :
بازگشت