Title of article :
Predicting causality ascriptions from background knowledge: model and experimental validation Original Research Article
Author/Authors :
Jean-François Bonnefon، نويسنده , , Rui Da Silva Neves، نويسنده , , Didier Dubois، نويسنده , , Henri Prade، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
14
From page :
752
To page :
765
Abstract :
A model is defined that predicts an agent’s ascriptions of causality (and related notions of facilitation and justification) between two events in a chain, based on background knowledge about the normal course of the world. Background knowledge is represented by non-monotonic consequence relations. This enables the model to handle situations of poor information, where background knowledge is not accurate enough to be represented in, e.g., structural equations. Tentative properties of causality ascriptions are discussed, and the conditions under which they hold are identified (preference for abnormal factors, transitivity, coherence with logical entailment, and stability with respect to disjunction and conjunction). Empirical data are reported to support the psychological plausibility of our basic definitions.
Journal title :
International Journal of Approximate Reasoning
Serial Year :
2008
Journal title :
International Journal of Approximate Reasoning
Record number :
1182519
Link To Document :
بازگشت