Title of article :
Formal reasoning with rough sets in multiple-source approximation systems Original Research Article
Author/Authors :
Md. Aquil Khan، نويسنده , , Mohua Banerjee، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
12
From page :
466
To page :
477
Abstract :
We focus on families of Pawlak approximation spaces, called multiple-source approximation systems (MSASs). These reflect the situation where information arrives from multiple sources. The behaviour of rough sets in MSASs is investigated – different notions of lower and upper approximations, and definability of a set in a MSAS are introduced. In this context, a generalized version of an information system, viz. multiple-source knowledge representation (KR)-system, is discussed. Apart from the indiscernibility relation which can be defined on a multiple-source KR-system, two other relations, viz. similarity and inclusion are considered. To facilitate formal reasoning with rough sets in MSASs, a quantified propositional modal logic LMSAS is proposed. Interpretations for sets of well-formed formulae (wffs) of LMSAS are defined on MSASs, and the various properties of rough sets in MSASs translate into logically valid wffs of the system. LMSAS is shown to be sound and complete with respect to this semantics. Some decidable problems are addressed. In particular, it is shown that for any LMSAS-wff image, it is possible to check whether image is satisfiable in a certain class of interpretations with MSASs of a given finite cardinality. Moreover, it is also decidable whether any wff image is satisfiable in the class of all interpretations with MSASs having domain of a given finite cardinality.
Keywords :
Modal logic , First-order logic , Approximation spaces , Rough sets , information systems
Journal title :
International Journal of Approximate Reasoning
Serial Year :
2008
Journal title :
International Journal of Approximate Reasoning
Record number :
1182561
Link To Document :
بازگشت