Title of article :
Extended Shenoy–Shafer architecture for inference in hybrid bayesian networks with deterministic conditionals Original Research Article
Author/Authors :
Prakash P. Shenoy، نويسنده , , James C. West، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
The main goal of this paper is to describe an architecture for solving large general hybrid Bayesian networks (BNs) with deterministic conditionals for continuous variables using local computation. In the presence of deterministic conditionals for continuous variables, we have to deal with the non-existence of the joint density function for the continuous variables. We represent deterministic conditional distributions for continuous variables using Dirac delta functions. Using the properties of Dirac delta functions, we can deal with a large class of deterministic functions. The architecture we develop is an extension of the Shenoy–Shafer architecture for discrete BNs. We extend the definitions of potentials to include conditional probability density functions and deterministic conditionals for continuous variables. We keep track of the units of continuous potentials. Inference in hybrid BNs is then done in the same way as in discrete BNs but by using discrete and continuous potentials and the extended definitions of combination and marginalization. We describe several small examples to illustrate our architecture. In addition, we solve exactly an extended version of the crop problem that includes non-conditional linear Gaussian distributions and non-linear deterministic functions.
Keywords :
Hybrid Bayesian networks , Inference in hybrid Bayesian networks , Dirac delta functions , Shenoy–Shafer architecture , Extended Shenoy–Shafer architecture
Journal title :
International Journal of Approximate Reasoning
Journal title :
International Journal of Approximate Reasoning