Title of article :
Existence of Minimizers for Polyconvex and Nonpolyconvex Problems
Author/Authors :
Cupini، Giovanni نويسنده , , Mascolo، Elvira نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2006
Pages :
-136
From page :
137
To page :
0
Abstract :
We study the existence of Lipschitz minimizers of integral functionals I(u)=(integral)(Omega) (phi)(x,det,Du(x)) where (Omega) is an open subset of R^N with Lipschitz boundary, (phi):(Omega)*(0,+(infinity)(right arrow)(0,+(infinity)) is a continuous function, and u in W^1,N((Omega),R^N), u(x)=x on (partial)(Omega). We consider both the cases of (phi) convex and nonconvex with respect to the last variable. The attainment results are obtained passing through the minimization of an auxiliary functional and the solution of a prescribed Jacobian equation.
Keywords :
public health
Journal title :
SIAM Journal on Control and Optimization
Serial Year :
2006
Journal title :
SIAM Journal on Control and Optimization
Record number :
118404
Link To Document :
بازگشت