Title of article :
Rapid discharge sintering of nickel–diamond metal matrix composites
Author/Authors :
Barry Twomey، نويسنده , , Aidan Breen، نويسنده , , Greg Byrne، نويسنده , , Alan Hynes، نويسنده , , Denis P. Dowling، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
1210
To page :
1216
Abstract :
In this study rapid discharge sintering (RDS) and furnace sintering of nickel–diamond metal matrix composites (MMCs) is compared. Nickel–diamond powder composites (80–20% by weight respectively) were uniaxially pressed into 20 mm discs at compaction pressures of 100, 200 and 300 MPa. Discharge sintering was carried out using a microwave plasma formed with hydrogen and hydrogen/nitrogen as the discharge gases and tube furnace sintering carried out in a argon or a hydrogen/nitrogen (3:1) atmosphere. Discs pressed to 300 MPa were treated at both 850 and 1000 °C. The properties of the sintered nickel–diamond composites were characterized using density, approximate flexural strength, hardness, wear resistance, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The RDS samples sintered at 1000 °C achieved the maximum approximate disc flexural strength of 473 MPa within a 20 min treatment time compared with 6 h for furnace sintered samples. Samples sintered using the RDS technique exhibited increased hardness values and a finer nickel matrix over furnace sintered samples. Using the RDS technique it has been possible to process nickel–diamond MMCs without oxidation or graphitisation at temperatures above 900 °C. Minimal diamond destruction was observed during abrasive wear testing of the RDS samples compared with damage and pull-out observed for furnace sintering.
Keywords :
Metal matrix composites (MMCs) , Sintering , Wear , Diamond processing , Mechanical behaviour
Journal title :
Journal of Materials Processing Technology
Serial Year :
2011
Journal title :
Journal of Materials Processing Technology
Record number :
1184174
Link To Document :
بازگشت