Title of article :
Modelling of multiple impacts for the prediction of distortions and residual stresses induced by ultrasonic shot peening (USP)
Author/Authors :
Thibaut Chaise، نويسنده , , Jun Li، نويسنده , , Daniel Nélias، نويسنده , , Régis Kubler، نويسنده , , Said Taheri، نويسنده , , Gérard Douchet، نويسنده , , Vincent Robin، نويسنده , , Philippe Gilles، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
During a manufacturing process, the ultrasonic shot peening (USP) technique can be used as the final surface treatment. The aim of this operation is to introduce surface compressive residual stresses in order to prevent crack propagation advancement. Although the numerical simulation method is able to predict the level of residual stresses in a peened part, the 3D modelling of the real USP process, in which many successive and shifted impacts take place, is very delicate to perform and costly in terms of computing time and memory space required. In this paper, a two step method based at first on the calculation of the averaged plastic strain tensor in a half-space by using a semi-analytical method and in a second time on the transfer of this plastic strain field to a finite element model is proposed in order to simulate the effects of the USP process in thin structures. The accuracy and advantages of the semi-analytical method are validated by a benchmark with several finite element codes. Experiments, similar to the Almen test, are performed on thin plates of Inconel 600. Numerical results in terms of distortions and residual stresses are compared with the experimental data.
Keywords :
Residual stresses , Inconel 600 , Ultrasonic shot peening , Numerical simulation , Semi-analytical method
Journal title :
Journal of Materials Processing Technology
Journal title :
Journal of Materials Processing Technology