Title of article :
Multi-objective optimization of a series–parallel system using GPSIA
Author/Authors :
Ekene Gabriel Okafor، نويسنده , , You-Chao Sun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
The optimal solution of a multi-objective optimization problem (MOP) corresponds to a Pareto set that is characterized by a tradeoff between objectives. Genetic Pareto Set Identification Algorithm (GPSIA) proposed for reliability-redundant MOPs is a hybrid technique which combines genetic and heuristic principles to generate non-dominated solutions. Series–parallel system with active redundancy is studied in this paper. Reliability and cost were the research objective functions subject to cost and weight constraints. The results reveal an evenly distributed non-dominated front. The distances between successive Pareto points were used to evaluate the general performance of the method. Plots were also used to show the computational results for the type of system studied and the robustness of the technique is discussed in comparison with NSGA-II and SPEA-2.
Keywords :
Genetic Pareto set identification algorithm (GPSIA) , Hybridization , Genetic Algorithm , Series-parallel systems , Multi-objective optimization
Journal title :
Reliability Engineering and System Safety
Journal title :
Reliability Engineering and System Safety