Title of article :
Assessing parameter uncertainty on coupled models using minimum information methods
Author/Authors :
Tim Bedford، نويسنده , , Kevin J. Wilson، نويسنده , , Alireza Daneshkhah، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
10
From page :
3
To page :
12
Abstract :
Probabilistic inversion is used to take expert uncertainty assessments about observable model outputs and build from them a distribution on the model parameters that captures the uncertainty expressed by the experts. In this paper we look at ways to use minimum information methods to do this, focussing in particular on the problem of ensuring consistency between expert assessments about differing variables, either as outputs from a single model or potentially as outputs along a chain of models. The paper shows how such a problem can be structured and then illustrates the method with two examples; one involving failure rates of equipment in series systems and the other atmospheric dispersion and deposition.
Keywords :
Coupled models , Expert judgement , Probabilistic risk analysis , Minimum information , Gaussian plume
Journal title :
Reliability Engineering and System Safety
Serial Year :
2014
Journal title :
Reliability Engineering and System Safety
Record number :
1188849
Link To Document :
بازگشت