Title of article
Repair and growth of heat- and freeze-injured Escherichia coli O157:H7 in selective enrichment broths Original Research Article
Author/Authors
Lawrence Restaino، نويسنده , , Elon W. Frampton، نويسنده , , Hans Spitz، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2001
Pages
13
From page
617
To page
629
Abstract
Two Escherichia coli O157:H7 strains, ATCC 35150 and 43894, were heat injured in a beef infusion at 53°C for 40 and 50 min, respectively (1· 5–2·0 log10cfu ml−1of injury) and freeze injured at −25°C for 30 days (1 log10cfu ml−1of injury) as determined by plating on MacConkey agar with 0·60% bile salts #3 (Mac-BS) as the selective medium and on Brain Heart Infusion agar (BHIA) as the non-selective medium. Repair of injury was measured in five selective enrichment broths [buffered peptone water supplemented with vancomycin, cefsulodin, and cefixime (BPW-VCC), modified EC broth with novobiocin (mEC+n), enterohaemorrhagic E. coli enrichment broth (EEB), double modified TSB (dmTSB), and BCM®E. coli enrichment broth (BCM®-EB)] versus TSB as the non-selective control broth over 3 h incubation at 37°C and 42°C. Repair was measured as the increase in cfu ml−1enumerated on Mac-BS with time vs the total cfu ml−1(injured and uninjured cells) enumerated on BHIA. In mEC+n, EEB, and dmTSB some death of both heat- and freeze-injured cells occurred immediately during the 3 h incubation (decrease on BHIA plates), and there was either minimal or no repair of the injured cells at both temperatures. Efficient repair of heat injury was obtained with both BPW-VCC and BCM®-EB, but the latter produced a growth rate and final cell concentration closer to TSB. In freeze-injury repair however, BPW-VCC gave poor results while repair in BCM®-EB was equal to TSB. Both BCM®-EB and BPW-VCC inhibited the growth of all Gram-positive and a select number of Gram-negative bacteria tested. The ability of the selective enrichment broth BCM®-EB to resuscitate heat- and freeze-injured E. coli O157:H7 efficiently within 3 h, warrants further testing with other types of stress in both artificially and naturally contaminated foods.
Journal title
Food Microbiology
Serial Year
2001
Journal title
Food Microbiology
Record number
1189091
Link To Document