Title of article :
Predictive model of Vibrio parahaemolyticus growth and survival on salmon meat as a function of temperature Original Research Article
Author/Authors :
Zhenquan Yang، نويسنده , , Xinan Jiao ، نويسنده , , Ping Li، نويسنده , , Zhi-ming Pan، نويسنده , , Jin-lin Huang، نويسنده , , Rui-xia Gu، نويسنده , , Wei-ming Fang، نويسنده , , Guoxiang Chao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
9
From page :
606
To page :
614
Abstract :
The growth and survival curves of a strain of pandemic Vibrio parahaemolyticus TGqx01 (serotype O3:K6) on salmon meat at different storage temperatures (range from 0 °C to 35 °C) were determined. In order to model the growth or inactivation kinetics of this pathogen during storage, the modified Gompertz and Weibull equations were chosen to regress growth and survival curves, respectively, and both equations produced good fit to the observed data (the average R2 value equals to 0.990 for modified Gompertz and 0.920 for Weibull equation). The effect of storage temperature on the specific growth rate (μ) was modeled by square root type equation, and the relationship between μ and lag time (λ) was described by a rule of μ × λ = constant. The shape factor (n) and scale factor (b) values of the Weibull equations versus the temperature (°C) were plotted and the temperature effects on these parameters were described by two linear empirical equations. The predicted growth and survival curves from the model were compared to real enumeration results, using the correlation coefficient (R2), bias factor (Bf) and accuracy factor (Af), to assess the performance of the established model. The results showed that the overall predictions for V. parahaemolyticus TGqx01 growth or inactivation on salmon at tested temperatures agreed well with observed plate counts, and the average R2, Bf and Af values were 0.958, 1.019 and 1.035, respectively.
Keywords :
Predictive model , Vibrio parahaemolyticus , Temperature , Salmon
Journal title :
Food Microbiology
Serial Year :
2009
Journal title :
Food Microbiology
Record number :
1189825
Link To Document :
بازگشت