Title of article
Dirichlet inhomogeneous boundary value problem for the n+1 complex Ginzburg–Landau equation
Author/Authors
Gao، Hongjun نويسنده , , Bu، Charles نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2004
Pages
-175
From page
176
To page
0
Abstract
We study the asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters. Thanks to an additional (fixed) parameter, we show that two different critical exponents play a crucial role in the asymptotic analysis, giving an explanation of the phenomena discovered in Gazzola et al. (Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters, Ann. Inst. H. Poincare Anal. Non Lineaire, to appear) and Gazzola and Serrin (Ann. Inst. H. Poincare Anal. Non Lineaire 19 (2002) 477).
Keywords
Complex Ginzburg–Landau equation , weak solution , global existence , Inviscid limit , nonlinear Schrodinger equation , Inhomogeneous boundary value problem
Journal title
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year
2004
Journal title
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number
119132
Link To Document