Title of article :
Dirichlet inhomogeneous boundary value problem for the n+1 complex Ginzburg–Landau equation
Author/Authors :
Gao، Hongjun نويسنده , , Bu، Charles نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
We study the asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters. Thanks to an additional (fixed) parameter, we show that two different critical exponents play a crucial role in the asymptotic analysis, giving an explanation of the phenomena discovered in Gazzola et al. (Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters, Ann. Inst. H. Poincare Anal. Non Lineaire, to appear) and Gazzola and Serrin (Ann. Inst. H. Poincare Anal. Non Lineaire 19 (2002) 477).
Keywords :
Complex Ginzburg–Landau equation , weak solution , global existence , Inviscid limit , nonlinear Schrodinger equation , Inhomogeneous boundary value problem
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS