Abstract :
In the context of general environmental concerns, the issue of waste from nuclear power plants is a question of actual interest. Here fundamental research in Nuclear Science may have great potential impact on society and on the longer-term future. In contrast to certain non-scientifically voiced opininos, it is clear, from basic facts of Nuclear Science, that e.g. fast neutrons can transmute long-lived radio-toxic components of the spent fuel into short-lived species. Because of the flexibility and control needed for the transmutation of large quantities of nuclear waste with a high content of minor actinides, one could favor for a transmuter reactor a sub-critical system, where the needed additional neutrons come from an external source, i.e. a high-energy proton accelerator producing spallation neutrons. In the European context, a roadmap for this technology was developped by a technical expert group. Consecutive to this, the European project PDS-XADS has been launched, as a preliminary design study for an Accelerator-Driven System. Here we shall report the conclusions for the layout of the accelerator and the associated beam-line to the reactor. The technical options have been chosen with the reliability of the accelerator as prime design criterion.