Author/Authors :
Walter F. Wreszinski، نويسنده , , Christian D. J?kel، نويسنده ,
Abstract :
We consider the formal non-relativistic limit (nrl) of the image relativistic quantum field theory (rqft), where s is the space dimension. Following the work of R. Jackiw [R. Jackiw, in: A. Ali, P. Hoodbhoy (Eds.), Bég Memorial Volume, World Scientific, Singapore, 1991], we show that, for s = 2 and a given value of the ultraviolet cutoff κ, there are two ways to perform the nrl: (i) fixing the renormalized mass m2 equal to the bare mass image; (ii) keeping the renormalized mass fixed and different from the bare mass image. In the (infinite-volume) two-particle sector the scattering amplitude tends to zero as κ → ∞ in case (i) and, in case (ii), there is a bound state, indicating that the interaction potential is attractive. As a consequence, stability of matter fails for our boson system. We discuss why both alternatives do not reproduce the low-energy behaviour of the full rqft. The singular nature of the nrl is also nicely illustrated for s = 1 by a rigorous stability/instability result of a different nature.