Title of article
Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrödinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications Original Research Article
Author/Authors
Hong-Xing Lu، نويسنده , , Hong-Wu Zhu and Bo Tian، نويسنده , , Zhen-Zhi Yao، نويسنده , , Xiang-Hua Meng، نويسنده , , Cheng Zhang، نويسنده , , Chun-Yi Zhang، نويسنده , , Bo Tian، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
9
From page
1947
To page
1955
Abstract
In this paper, the multisoliton solutions in terms of double Wronskian determinant are presented for a generalized variable-coefficient nonlinear Schrödinger equation, which appears in space and laboratory plasmas, arterial mechanics, fluid dynamics, optical communications and so on. By means of the particularly nice properties of Wronskian determinant, the solutions are testified through direct substitution into the bilinear equations. Furthermore, it can be proved that the bilinear Bäcklund transformation transforms between (N − 1)- and N-soliton solutions.
Keywords
B?cklund transformation , Variable-coefficient nonlinear Schr?dinger equation , Double Wronskian determinant , Multisoliton solutions , Bilinear form
Journal title
Annals of Physics
Serial Year
2008
Journal title
Annals of Physics
Record number
1206095
Link To Document