• Title of article

    Quantum integrals of motion for variable quadratic Hamiltonians Original Research Article

  • Author/Authors

    Ricardo Cordero-Soto، نويسنده , , Erwin Suazo، نويسنده , , Sergei K. Suslov، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    29
  • From page
    1884
  • To page
    1912
  • Abstract
    We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time-dependent Schrödinger equation with variable quadratic Hamiltonians. An extension of the Lewis–Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration. A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application.
  • Keywords
    The time-dependent Schr?dinger equation , Green function , Propagator , Quantum damped oscillators , Caldirola–Kanai Hamiltonians , Quantum integrals of motion , Lewis–Riesenfeld dynamical invariant , Cauchy initial value problem , Ermakovיs equation , Ehrenfestיs theorem
  • Journal title
    Annals of Physics
  • Serial Year
    2010
  • Journal title
    Annals of Physics
  • Record number

    1206364