Title of article
Quantum integrals of motion for variable quadratic Hamiltonians Original Research Article
Author/Authors
Ricardo Cordero-Soto، نويسنده , , Erwin Suazo، نويسنده , , Sergei K. Suslov، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2010
Pages
29
From page
1884
To page
1912
Abstract
We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time-dependent Schrödinger equation with variable quadratic Hamiltonians. An extension of the Lewis–Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration. A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application.
Keywords
The time-dependent Schr?dinger equation , Green function , Propagator , Quantum damped oscillators , Caldirola–Kanai Hamiltonians , Quantum integrals of motion , Lewis–Riesenfeld dynamical invariant , Cauchy initial value problem , Ermakovיs equation , Ehrenfestיs theorem
Journal title
Annals of Physics
Serial Year
2010
Journal title
Annals of Physics
Record number
1206364
Link To Document