Title of article :
Kauffman knot polynomials in classical abelian Chern–Simons field theory Original Research Article
Author/Authors :
Xin Liu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
12
From page :
2641
To page :
2652
Abstract :
Kauffman knot polynomial invariants are discovered in classical abelian Chern–Simons field theory. A topological invariant image is constructed for a link image, where I is the abelian Chern–Simons action and t a formal constant. For oriented knotted vortex lines, tI satisfies the skein relations of the Kauffman R-polynomial; for un-oriented knotted lines, tI satisfies the skein relations of the Kauffman bracket polynomial. As an example the bracket polynomials of trefoil knots are computed, and the Jones polynomial is constructed from the bracket polynomial.
Keywords :
Kauffman polynomials , Classical Chern–Simons field theory , Knotted vortex lines
Journal title :
Annals of Physics
Serial Year :
2010
Journal title :
Annals of Physics
Record number :
1206398
Link To Document :
بازگشت