• Title of article

    Superinsulator–superconductor duality in two dimensions Original Research Article

  • Author/Authors

    Tatyana I. Baturina، نويسنده , , Valerii M. Vinokur، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2013
  • Pages
    22
  • From page
    236
  • To page
    257
  • Abstract
    For nearly a half century the dominant orthodoxy has been that the only effect of the Cooper pairing is the state with zero resistivity at finite temperatures, superconductivity. In this work we demonstrate that by the symmetry of the Heisenberg uncertainty principle relating the amplitude and phase of the superconducting order parameter, Cooper pairing can generate the dual state with zero conductivity in the finite temperature range, superinsulation. We show that this duality realizes in the planar Josephson junction arrays (JJA) via the duality between the Berezinskii–Kosterlitz–Thouless (BKT) transition in the vortex–antivortex plasma, resulting in phase-coherent superconductivity below the transition temperature, and the charge-BKT transition occurring in the insulating state of JJA and marking formation of the low-temperature charge-BKT state, superinsulation. We find that in disordered superconducting films that are on the brink of superconductor–insulator transition the Coulomb forces between the charges acquire two-dimensional character, i.e. the corresponding interaction energy depends logarithmically upon charge separation, bringing the same vortex-charge-BKT transition duality, and realization of superinsulation in disordered films as the low-temperature charge-BKT state. Finally, we discuss possible applications and utilizations of superconductivity–superinsulation duality.
  • Keywords
    Josephson junction array , Superconductivity , localization , Nanoscale system , Disordered film , Superconductor–insulator transition
  • Journal title
    Annals of Physics
  • Serial Year
    2013
  • Journal title
    Annals of Physics
  • Record number

    1206735