Title of article :
Qualitative decision under uncertainty: back to expected utility Original Research Article
Author/Authors :
Helene Fargier، نويسنده , , Régis Sabbadin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
36
From page :
245
To page :
280
Abstract :
Different qualitative models have been proposed for decision under uncertainty in Artificial Intelligence, but they generally fail to satisfy the principle of strict Pareto dominance or principle of “efficiency”, in contrast to the classical numerical criterion—expected utility. Among the most prominent examples of qualitative models are the qualitative possibilistic utilities (QPU) and the order of magnitude expected utilities (OMEU). They are both appealing but inefficient in the above sense. The question is whether it is possible to reconcile qualitative criteria and efficiency. The present paper shows that the answer is yes, and that it leads to special kinds of expected utilities. It is also shown that although numerical, these expected utilities remain qualitative: they lead to different decision procedures based on min, max and reverse operators only, generalizing the leximin and leximax orderings of vectors.
Keywords :
Expected utility , Leximax ordering , Decision under uncertainty , Possibility theory , Leximin ordering
Journal title :
Artificial Intelligence
Serial Year :
2005
Journal title :
Artificial Intelligence
Record number :
1207418
Link To Document :
بازگشت