Title of article :
Sequential Monte Carlo in reachability heuristics for probabilistic planning Original Research Article
Author/Authors :
Daniel Bryce، نويسنده , , Subbarao Kambhampati، نويسنده , , David E. Smith، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
31
From page :
685
To page :
715
Abstract :
Some of the current best conformant probabilistic planners focus on finding a fixed length plan with maximal probability. While these approaches can find optimal solutions, they often do not scale for large problems or plan lengths. As has been shown in classical planning, heuristic search outperforms bounded length search (especially when an appropriate plan length is not given a priori). The problem with applying heuristic search in probabilistic planning is that effective heuristics are as yet lacking. In this work, we apply heuristic search to conformant probabilistic planning by adapting planning graph heuristics developed for non-deterministic planning. We evaluate a straight-forward application of these planning graph techniques, which amounts to exactly computing a distribution over many relaxed planning graphs (one planning graph for each joint outcome of uncertain actions at each time step). Computing this distribution is costly, so we apply Sequential Monte Carlo (SMC) to approximate it. One important issue that we explore in this work is how to automatically determine the number of samples required for effective heuristic computation. We empirically demonstrate on several domains how our efficient, but sometimes suboptimal, approach enables our planner to solve much larger problems than an existing optimal bounded length probabilistic planner and still find reasonable quality solutions.
Keywords :
Planning , Heuristics
Journal title :
Artificial Intelligence
Serial Year :
2008
Journal title :
Artificial Intelligence
Record number :
1207606
Link To Document :
بازگشت