Title of article
Efficient duration and hierarchical modeling for human activity recognition Original Research Article
Author/Authors
Thi Duong، نويسنده , , Dinh Phung، نويسنده , , Hung Bui، نويسنده , , Svetha Venkatesh، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
27
From page
830
To page
856
Abstract
A challenge in building pervasive and smart spaces is to learn and recognize human activities of daily living (ADLs). In this paper, we address this problem and argue that in dealing with ADLs, it is beneficial to exploit both their typical duration patterns and inherent hierarchical structures. We exploit efficient duration modeling using the novel Coxian distribution to form the Coxian hidden semi-Markov model (CxHSMM) and apply it to the problem of learning and recognizing ADLs with complex temporal dependencies. The Coxian duration model has several advantages over existing duration parameterization using multinomial or exponential family distributions, including its denseness in the space of nonnegative distributions, low number of parameters, computational efficiency and the existence of closed-form estimation solutions. Further we combine both hierarchical and duration extensions of the hidden Markov model (HMM) to form the novel switching hidden semi-Markov model (SHSMM), and empirically compare its performance with existing models. The model can learn what an occupant normally does during the day from unsegmented training data and then perform online activity classification, segmentation and abnormality detection. Experimental results show that Coxian modeling outperforms a range of baseline models for the task of activity segmentation. We also achieve a recognition accuracy competitive to the current state-of-the-art multinomial duration model, while gaining a significant reduction in computation. Furthermore, cross-validation model selection on the number of phases K in the Coxian indicates that only a small K is required to achieve the optimal performance. Finally, our models are further tested in a more challenging setting in which the tracking is often lost and the activities considerably overlap. With a small amount of labels supplied during training in a partially supervised learning mode, our models are again able to deliver reliable performance, again with a small number of phases, making our proposed framework an attractive choice for activity modeling.
Keywords
Duration modeling , Coxian , Hidden semi-Markov model , Smart surveillance , Human activity recognition
Journal title
Artificial Intelligence
Serial Year
2009
Journal title
Artificial Intelligence
Record number
1207688
Link To Document