Title of article :
AND/OR Branch-and-Bound search for combinatorial optimization in graphical models Original Research Article
Author/Authors :
Radu Marinescu، نويسنده , , Rina Dechter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
35
From page :
1457
To page :
1491
Abstract :
This is the first of two papers presenting and evaluating the power of a new framework for combinatorial optimization in graphical models, based on AND/OR search spaces. We introduce a new generation of depth-first Branch-and-Bound algorithms that explore the AND/OR search tree using static and dynamic variable orderings. The virtue of the AND/OR representation of the search space is that its size may be far smaller than that of a traditional OR representation, which can translate into significant time savings for search algorithms. The focus of this paper is on linear space search which explores the AND/OR search tree. In the second paper we explore memory intensive AND/OR search algorithms. In conjunction with the AND/OR search space we investigate the power of the mini-bucket heuristics in both static and dynamic setups. We focus on two most common optimization problems in graphical models: finding the Most Probable Explanation in Bayesian networks and solving Weighted CSPs. In extensive empirical evaluations we demonstrate that the new AND/OR Branch-and-Bound approach improves considerably over the traditional OR search strategy and show how various variable ordering schemes impact the performance of the AND/OR search scheme.
Keywords :
Constraint networks , Bayesian networks , Search , Constraint optimization , Decomposition , AND/OR search , Graphical models
Journal title :
Artificial Intelligence
Serial Year :
2009
Journal title :
Artificial Intelligence
Record number :
1207714
Link To Document :
بازگشت