Title of article :
On error estimation and adaptive refinement for element free Galerkin method: Part I: stress recovery and a posteriori error estimation
Author/Authors :
C.K. Lee، نويسنده , , Ce Zhou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
16
From page :
413
To page :
428
Abstract :
In this study, an adaptive refinement procedure using the element free Galerkin method (EFGM) for the solution of 2D elastostatic problem is suggested. This refinement procedure is based on the well-known Zienkiewicz and Zhu (Z–Z) error estimator for the a posteriori error estimation and a simple point refinement scheme for new point mesh generation. The presentation of the work is divided into two parts. In Part I, concentration will be paid on the stress recovery and the a posteriori error estimation processes for the EFGM. A comprehensive study on the theories and natures of some commonly used recovery schemes for the EFGM is given. The essential features and relationships among the studied recovery schemes are highlighted. It will be demonstrated that all these recovery schemes are particular cases of a general recovery scheme called the weighed continuous moving-least-square over stationary least square (MLS-SLS) recovery scheme. A numerical experience has also been carried out to study the performances of a number of different MLS-SLS recovery procedures generated by applying different fitting parameters to the continuous MLS-SLS recovery scheme. In Part II of the study, attention will be focused on the mesh refinement and the development of the adaptive algorithms for the proposed automatic adaptive EFGM procedure.
Keywords :
Moving-least-square fitting , element free Galerkin method , stress recovery , a posteriori error estimation , Adaptive refinement
Journal title :
Computers and Structures
Serial Year :
2004
Journal title :
Computers and Structures
Record number :
1209293
Link To Document :
بازگشت