Title of article :
The local modified extrapolated Gauss–Seidel (LMEGS) method
Author/Authors :
A.A. Consta، نويسنده , , N.M. Missirlis، نويسنده , , F.I. Tzaferis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
5
From page :
2447
To page :
2451
Abstract :
In this paper we present the convergence analysis of the Local Modified Extrapolated Gauss–Seidel (LMEGS) method. The related theory of convergence is developed. Convergence ranges and optimum values for the involved parameters of the LMEGS method are obtained. It is proved that even if μ, the smallest in absolute value eigenvalue of the iteration matrix of the Jacobi method, becomes larger than unity LMEGS will converge. In fact, the larger μ the faster the convergence of LMEGS.
Keywords :
Linear systems , Gauss–Seidel , Iterative Methods , Fourier analysis , Convection Diffusion Equation
Journal title :
Computers and Structures
Serial Year :
2004
Journal title :
Computers and Structures
Record number :
1209645
Link To Document :
بازگشت