Abstract :
Hypersonic rarefied-gas flows near two side-by-side plates and cylinders, toroidal balloon, plate and cylinder over a plane surface, and plate behind a cylinder in argon, nitrogen, oxygen, and carbon dioxide have been studied numerically using the direct simulation Monte-Carlo technique under the transition flow conditions at Knudsen numbers from 0.004 to 10. Strong influences of the geometrical factor (the ratio of a distance between bodies to a body length) and the Knudsen number on the flow structure about the bodies (shock-wave shapes, the configuration of subsonic flow zones), skin friction, pressure distribution, lift, and drag have been found.
Keywords :
Hypersonic rarefied-gas flows , Direct simulation Monte-Carlo method , Flow interference , Toroidal balloon , Simple-shape bodies