Title of article :
Structural identification with systematic errors and unknown uncertainty dependencies
Author/Authors :
James-A. Goulet، نويسنده , , Ian F.C. Smith، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
8
From page :
251
To page :
258
Abstract :
When system identification methodologies are used to interpret measurement data taken from structures, uncertainty dependencies are in many cases unknown due to model simplifications and omissions. This paper presents how error-domain model falsification reveals properties of a structure when uncertainty dependencies are unknown and how incorrect assumptions regarding model-class adequacy are detected. An illustrative example is used to compare results with those from a residual minimization technique and Bayesian inference. Error-domain model falsification correctly identifies parameter values in situations where there are systematic errors, and can detect the presence of unrecognized systematic errors.
Keywords :
Uncertainties , Dependencies , Falsification , Bayesian , System identification
Journal title :
Computers and Structures
Serial Year :
2013
Journal title :
Computers and Structures
Record number :
1211072
Link To Document :
بازگشت