Title of article :
Rough set theory for the interval-valued fuzzy information systems
Author/Authors :
Zengtai Gong، نويسنده , , Bingzhen Sun، نويسنده , , Degang Chen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
The notion of a rough set was originally proposed by Pawlak [Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences 11 (5) (1982) 341–356]. Later on, Dubois and Prade [D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, International Journal of General System 17 (2–3) (1990) 191–209] introduced rough fuzzy sets and fuzzy rough sets as a generalization of rough sets. This paper deals with an interval-valued fuzzy information system by means of integrating the classical Pawlak rough set theory with the interval-valued fuzzy set theory and discusses the basic rough set theory for the interval-valued fuzzy information systems. In this paper we firstly define the rough approximation of an interval-valued fuzzy set on the universe U in the classical Pawlak approximation space and the generalized approximation space respectively, i.e., the space on which the interval-valued rough fuzzy set model is built. Secondly several interesting properties of the approximation operators are examined, and the interrelationships of the interval-valued rough fuzzy set models in the classical Pawlak approximation space and the generalized approximation space are investigated. Thirdly we discuss the attribute reduction of the interval-valued fuzzy information systems. Finally, the methods of the knowledge discovery for the interval-valued fuzzy information systems are presented with an example.
Keywords :
Fuzzy sets , Rough sets , Interval-valued fuzzy sets , Interval-valued fuzzy information systems
Journal title :
Information Sciences
Journal title :
Information Sciences