Title of article :
A general framework for statistical performance comparison of evolutionary computation algorithms
Author/Authors :
David Shilane، نويسنده , , Jarno Martikainen، نويسنده , , Sandrine Dudoit، نويسنده , , Seppo J. Ovaska، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
10
From page :
2870
To page :
2879
Abstract :
This paper proposes a statistical methodology for comparing the performance of evolutionary computation algorithms. A twofold sampling scheme for collecting performance data is introduced, and these data are analyzed using bootstrap-based multiple hypothesis testing procedures. The proposed method is sufficiently flexible to allow the researcher to choose how performance is measured, does not rely upon distributional assumptions, and can be extended to analyze many other randomized numeric optimization routines. As a result, this approach offers a convenient, flexible, and reliable technique for comparing algorithms in a wide variety of applications.
Keywords :
Evolutionary Computation , Bootstrap , Multiple hypothesis testing , Twofold sampling , Genetic algorithms , performance comparison , statistics
Journal title :
Information Sciences
Serial Year :
2008
Journal title :
Information Sciences
Record number :
1213349
Link To Document :
بازگشت