Title of article
Learning and inferencing in user ontology for personalized Semantic Web search
Author/Authors
Xing Jiang، نويسنده , , Ah-Hwee Tan، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
15
From page
2794
To page
2808
Abstract
User modeling is aimed at capturing the users’ interests in a working domain, which forms the basis of providing personalized information services. In this paper, we present an ontology based user model, called user ontology, for providing personalized information service in the Semantic Web. Different from the existing approaches that only use concepts and taxonomic relations for user modeling, the proposed user ontology model utilizes concepts, taxonomic relations, and non-taxonomic relations in a given domain ontology to capture the users’ interests. As a customized view of the domain ontology, a user ontology provides a richer and more precise representation of the user’s interests in the target domain. Specifically, we present a set of statistical methods to learn a user ontology from a given domain ontology and a spreading activation procedure for inferencing in the user ontology. The proposed user ontology model with the spreading activation based inferencing procedure has been incorporated into a semantic search engine, called OntoSearch, to provide personalized document retrieval services. The experimental results, based on the ACM digital library and the Google Directory, support the efficacy of the user ontology approach to providing personalized information services.
Keywords
SEMANTIC WEB , User ontology , Spreading activation theory , Domain ontology , personalization
Journal title
Information Sciences
Serial Year
2009
Journal title
Information Sciences
Record number
1213701
Link To Document