Title of article :
MICROFLUIDIC TOOLS FOR STUDYING THE SPECIFIC BINDING, ADSORPTION, AND DISPLACEMENT OF PROTEINS AT INTERFACES
Author/Authors :
Holden، Matthew A. نويسنده , , Cremer، Paul S. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
19
From page :
369
To page :
387
Abstract :
A combination of temperature and concentration gradient microfluidic devices were employed to study the mechanistic details of biomacromolecule interactions at oxide interfaces. These lab-on-a-chip techniques allowed high-throughput, multiplexed data collection using only nanoliters of analyte. The three examples presented demonstrate rapid data acquisition relative to standard methods. First, we show ligand-receptor binding data for multivalent binding between membrane-bound ligands and incoming aqueous proteins with several binding pockets. A model is described for obtaining both the first and second dissociation constant for the reaction. The second example employs temperature gradient microfluidics to study the thermoresponsive properties of polymers and proteins. Both the folding mechanism and subsequent formation of an aqueous two-phase system were followed. Finally, these microfluidic techniques were combined with fluorescence microscopy and nonlinear optical spectroscopy to elucidate the mechanism of fibrinogen displacement from silica surfaces. This combination of methods enabled both direct and indirect observation of protein conformational changes.
Keywords :
Biofouling , polymer folding , PNIPAM , fibrinogen , Surface chemistry , Vroman effect , multivalent , ligand-receptor , lipid bilayer , supported membrane , lab-on-a-chip , high throughput , fluorescence microscopy , lower critical solution temperature (LCST) , sum frequency generation (SFG
Journal title :
Annual Review of Physical Chemistry
Serial Year :
2005
Journal title :
Annual Review of Physical Chemistry
Record number :
121396
Link To Document :
بازگشت