Title of article
Artificial bee colony programming for symbolic regression
Author/Authors
Dervis Karaboga، نويسنده , , Celal Ozturk، نويسنده , , Nurhan Karaboga، نويسنده , , Beyza Gorkemli، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2012
Pages
15
From page
1
To page
15
Abstract
Artificial bee colony algorithm simulating the intelligent foraging behavior of honey bee swarms is one of the most popular swarm based optimization algorithms. It has been introduced in 2005 and applied in several fields to solve different problems up to date. In this paper, an artificial bee colony algorithm, called as Artificial Bee Colony Programming (ABCP), is described for the first time as a new method on symbolic regression which is a very important practical problem. Symbolic regression is a process of obtaining a mathematical model using given finite sampling of values of independent variables and associated values of dependent variables. In this work, a set of symbolic regression benchmark problems are solved using artificial bee colony programming and then its performance is compared with the very well-known method evolving computer programs, genetic programming. The simulation results indicate that the proposed method is very feasible and robust on the considered test problems of symbolic regression.
Keywords
Symbolic regression , Artificial Bee Colony Algorithm , Genetic programming , Artificial bee colony programming
Journal title
Information Sciences
Serial Year
2012
Journal title
Information Sciences
Record number
1215187
Link To Document