Title of article :
A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm
Author/Authors :
Ibrahim Berkan Aydilek، نويسنده , , Ahmet Arslan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
11
From page :
25
To page :
35
Abstract :
Missing values in datasets should be extracted from the datasets or should be estimated before they are used for classification, association rules or clustering in the preprocessing stage of data mining. In this study, we utilize a fuzzy c-means clustering hybrid approach that combines support vector regression and a genetic algorithm. In this method, the fuzzy clustering parameters, cluster size and weighting factor are optimized and missing values are estimated. The proposed novel hybrid method yields sufficient and sensible imputation performance results. The results are compared with those of fuzzy c-means genetic algorithm imputation, support vector regression genetic algorithm imputation and zero imputation.
Keywords :
Missing data , Missing Values , Imputation , Support vector regression , Fuzzy C-Means
Journal title :
Information Sciences
Serial Year :
2013
Journal title :
Information Sciences
Record number :
1215555
Link To Document :
بازگشت