Title of article
An active contour model and its algorithms with local and global Gaussian distribution fitting energies
Author/Authors
Hui Wang، نويسنده , , Tingzhu Huang، نويسنده , , Zongben Xu، نويسنده , , Yilun Wang، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2014
Pages
17
From page
43
To page
59
Abstract
In this paper, we propose an active contour model and its corresponding algorithms with detailed implementation for image segmentation. In the proposed model, the local and global region fitting energies are described by the combination of the local and global Gaussian distributions with different means and variances, respectively. In this combination, we increase a weighting coefficient by which we can adjust the ratio between the local and global region fitting energies. Then we present an algorithm for implementing the proposed model directly. Considering that, in practice, the selection of the weighting coefficient is troublesome, we present a modified algorithm in order to overcome this problem and increase the flexibility. By adaptively updating the weighting coefficient and the time step with the contour evolution, this algorithm is less sensitive to the initialization of the contour and can speed up the convergence rate. Besides, it is robust to the noise and can be used to extract the desired objects. Experiment results demonstrate that the proposed model and its algorithms are effective with application to both the synthetic and real-world images.
Keywords
Active contour model , image segmentation , level set method , LBF model , Gaussian distribution , Chan-Vese model
Journal title
Information Sciences
Serial Year
2014
Journal title
Information Sciences
Record number
1216052
Link To Document