Author/Authors :
Hiroyasu Okuyama، نويسنده , , Yoshinori Onishi، نويسنده ,
Abstract :
Methods for on-site measurement of building thermal performance system parameters such as coefficient of heat loss, solar heat gain, effective thermal capacity, infiltration rate, and effective mixing volume are very important, yet a nontrivial task. Although these are steady-state parameters, on-site measurements are exposed to changing meteorological conditions and are affected by the thermal capacity of the building. In addition, these parameters should generally be estimated by using a multi-zone model such as inter-zone flow rates. In this regard, a state space equation model, referred to as a “thermal network model,” has been devised to generalize such multi-zone heat transfer system and tracer gas diffusion system measurements. This model is composed of three parameter types, and we have developed a system parameter identification theory and uncertainty analysis method using least squares, as well as actual measurement systems. In the present paper, we improve the least-squares regression equation, the uncertainty analysis method, and the reliability evaluation method. We investigate appropriate excitation waveforms and frequencies for heating and tracer gas release, as well as a low-pass filter for pre-processing measurement data. We verify these theories and methods using computer-simulated measurement.
Keywords :
Thermal network model , State space equation , Discrepancy ratio , Optimum excitation waveform , System identification , least squares